
Team US-11617 Page 1 of 30

Contents

I Introduction 3

1.1 Background . 3

1.2 Problem Restatement . 3

II Assumptions & Variables 4

2.1 Assumptions . 4

2.2 Variables . 4

III Boarding Simulation Model 5

3.1 What are Practical Boarding Procedures? . 5

3.2 Passenger Reneging . 6

3.3 Classifying Passengers . 7

3.4 Passenger Demographics . 8

3.5 Structuring a Stochastic Process . 9

3.6 Results & Analysis . 11

IV Boarding Optimization Model 13

4.1 Boarding Group Selection as an Evolutionary Process 13

4.2 Results and Analysis . 14

4.2.1 Simulating and Optimizing Lower Capacity 15

V Disembarking Models 16

5.1 Model #1: A Simulated Approach . 16

5.2 Model #2: Mathematical Maneuvering . 17

5.2.1 Predicting Disembarking . 17
5.2.2 Minimizing Boarding Time . 17

VI Appendix A: Boarding Simulation Code 20

VII Appendix B: Genetic Algorithm Code 28

Team US-11617 Page 2 of 30

Letter to airline executive

Dear Sir/Mdm,

Thank you for giving us the opportunity to contribute in improving your airline’s operating
procedures. Over the past days, our team has decided to tackle this challenge; we have
developed a series of robust models that simulate and model the boarding and disembarking
procedures from a holistic perspective.

Throughout our development process, we have established a concrete set of desirables that
provide insight into what passengers find convenient and what govern effective procedures.
We thus develop a model that simulates individual passenger behavior and understands how
they will act during boarding and disembarking their flight. The commonplace boarding
procedures in question include Random, By Seat, and By Section. Ultimately, we aim to
highlight techniques to streamline the boarding and disembarking processes, focusing specifi-
cally on ones which achieve a balance between time-efficiency and feasibility from a passenger
perspective.

In the process of constructing a boarding time prediction model, we have identified several
important factors. The first three factors are related to passenger demographics. First is
walking speed, which is dependent largely on the age of the passenger. Second is sitting and
standing speed, which influences the amount of accumulated time spent navigating around
physical and human obstructions (e.g. when a passenger attempts to enter a row that is
partially occupied). Third is the amount of luggage, which varies with the time a passenger
spends obstructing the path of others in the aisle.

To make the model more realistic, we also considered customer satisfaction with the boarding
procedure in use as a factor. We refer to the inclination of passengers to resist direction
as reneging, which may occur at any phase of boarding and disembarking. Given the pan-
demic situation, we included capacity and luggage limitations in the model to improve its
adaptability.

With these factors in mind, we simulated a stochastic process that mirrored the action of
passengers boarding an aircraft either randomly or by prescribed methods. Simulations were
run on various passenger aircraft models, such as Narrow Body; Flying Wing; and Two-
Entrance, Two-Aisle. This allowed us to estimate the time-efficiency of various boarding
and disembarking procedures. In particular, for the typical “Narrow Body” passenger aircraft
model, we found that the By Seat method of boarding was fastest with an average elapsed time
of 32.6 minutes. Furthermore, the performance of other boarding procedures are described in
detail in the enclosed paper.

Thank you again for your interest. We look forward to your feedback.

Best,

IM2C Team US-11617

Team US-11617 Page 3 of 30

I Introduction

1.1 Background

In commercial passenger air travel, airlines use various boarding and disembarking methods
from completely unstructured (passengers board or leave the plane without guidance) to struc-
tured (passengers board or leave the plane using a prescribed method). Prescribed methods
may be based on row numbers, seat positions, or priority groups. In practice, however, even
when the prescribed method is announced, not all passengers follow the instructions.

The boarding process includes the movement of passengers from the entrance of the aircraft
to their assigned seats. This movement can be hindered by aisle and seat interference. For
example, many passengers have carry-on bags which they stow into the overhead bins before
taking their seats. Each time a passenger stops to stow a bag, the queue of other passengers
stops because narrow aircraft aisles allow only one passenger to pass at a time. Another
hindrance is that some seats (e.g., window seats) are unreachable if other seats (e.g., aisle
seats) are already occupied. When this occurs, some passengers must stand up and move into
the aisle so other passengers can reach their seats.

The disembarking process is the opposite of boarding with its own possible hindrances to
passenger movement. Some passengers are simply slow getting out of their seat and row, or
slow moving to the exit. Passengers also block the aisle while collecting their belongings from
either their seat or from the overhead bin forcing passengers behind them in the aircraft to
wait.

1.2 Problem Restatement

In this paper, we aim to address the problem of modeling, optimizing, and analyzing boarding
and disembarking procedures. In particular, we must consider consider how fluctuations
in passenger attendance, luggage, and aircraft design influence these processes. Following
such analyses, we must propose new procedures to decrease total time incurred by current
methods.

Team US-11617 Page 4 of 30

II Assumptions & Variables

2.1 Assumptions

1. After arriving at their seat during boarding, passengers do not stand back
up unless they need to allow another passenger to reach their seat.
During the boarding process, as passengers gradually arrive, passengers that have al-
ready sat down will not look to actively leave their seat. Unless they need to step
into the aisle to let another passenger reach their seat, the hindrance of navigating
throughout the packed aircraft will disincentivize passengers from repeatedly standing
up.

2. Passengers sit in the seat indicated on their ticket.
Due to the high costs of airline tickets and the potential risk of getting removed off the
aircraft, passengers do not actively attempt to steal another passenger’s seat. Accord-
ingly, they only look for their designated seat when boarding.

3. The total number of carry-on items does not exceed the airliner’s capacity.
While some passengers may hold more carry-on items and completely fill their overhead
bins, there is enough room elsewhere on the aircraft to accommodate all luggage.

4. Aisles and seats are only wide enough for one person, and passengers do not
trample past each other. Given the compact nature of most airliners, it is reasonable
to assume passengers maintain enough personal space, especially given current pandemic
conditions. Unpredictable chaos may begin if passengers begin to pass and trample past
each other in aisles and rows.

5. Passengers boarding or disembarking the aircraft do not walk against the
flow of traffic. For our models, we assume passengers only walk in one direction
towards the seat designated on their ticket or the exit (depending on boarding or dis-
embarking procedure).

2.2 Variables

Table 1: Variables Used and Definitions

Symbol Description

S Set of all seats on an aircraft

P A partition of the set S (A boarding procedure).

w An individual’s walking speed

pr Reneging Rate

Team US-11617 Page 5 of 30

III Boarding Simulation Model

In order to evaluate and optimize the airline boarding process, we first develop an adaptable
stochastic simulation of boarding. We accomplish this by concretely formulating what it
means to be a generalized boarding (or disembarking) procedure. This approach allows us to
test and predict the boarding of various existing and newly proposed boarding procedures.
We consider the following factors that influence boarding time at the individual passenger
level: walking speed, aircraft layout, passenger demographics & characteristics, luggage, and
reneging rate. We do not consider sweeping factors such as weather or airline location, as
these fluctuate heavily and do not immediately influence the success of one specific boarding
procedure on general aircraft boarding.

3.1 What are Practical Boarding Procedures?

At its heart, any generalized boarding procedure partitions the set of passengers into distinct
boarding groups. For any aircraft, suppose we number each seat si with a distinct integral
value, indicating a seat number i. For l total seats, we have |S| = l, where S = {s1, s2, ..., sl}
is the set of all seats on an aircraft. Suppose we partition S into n disjoint subsets P =

{S1, S2, ..., Sn}. We have:

S =
n⋃

i=1

Si where Sk ∩ Sj = ∅ for all (k, j)

The key observation in making a general boarding procedure involves accounting for all
seats on an aircraft. This is important due to the inherent fluctuations in passenger turn-
up and the need for standardized training for airport staff— while different aircrafts may
have different boarding procedures, it is unreasonable to have differing procedures for every
individual flight.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

...

...

...

...

...

...

P =



 {3, 4, 9, 10, 15, 16, ...}

Boarding Group #1

, {2, 5, 8, 11, 14, 17, ...}
Boarding Group #2

,{1, 6, 7, 12, 13, 18}
Boarding Group #3





S = {1, 2, 3, 4, 5, 6, 7, 8, 9, ...}

A
ft of A

ircraft
A

ir
cr

af
t

E
n
tr

an
ce

Figure 1: Partitions for a Boarding by Seat procedure in a “Narrow Body” Aircraft

We recognize that while many boarding procedures provide concrete theoretic improve-

Team US-11617 Page 6 of 30

ments to boarding time, there is a fundamental factor that inhibits these propositions from
hitting airports worldwide: the number of boarding groups n. With more boarding groups,
passengers are naturally more inclined to resist staff instruction, regardless of the potential
time-saves.

Having only one boarding group would be ideal for passengers, as it means there is no
buffer time in between loading. While this doesn’t always correspond with quick boarding,
it is practically ideal for passengers. Conversely, having a boarding group for every single
individual seat would be of least appeal to passengers. For an aircraft with l seats, the least
practical solution would consist of l boarding groups. In the next section, we consider how
this intuition relates to passenger behavior during boarding.

3.2 Passenger Reneging

Following a successful partition of seats, a boarding procedure involves airline staff calling up
each boarding group individually. After one group fully boards, the next group will follow suit
and begin boarding. Note that while a boarding group will contain all seat numbers in that
group, it makes no prescription as to the order of passengers. That is to say, boarding groups
enter completely randomized; passengers may act unpredictably and ignore the prescribed
group assignments— a person in Boarding Group 2 may enter during the boarding of Group
3. We consider this behavior as reneging.

Passengers are naturally more likely to renege if the number of boarding groups is high—
if the boarding procedure seems impractical. It is not uncommon to be rushed, impatient, and
thus disorderly in such a situation. To account for this relationship, we consider a Reneging
Rate (probability of reneging) that differs based on the number of boarding rounds in a
procedure. According to the above description, a logistic function [8], or S-curve, can be used
to formulate this relationship:

pr =
pr1pr2 exp(R(n− 2))

pr2 + pr1(exp(R(n− 2))− 1)
(3.2.1)

Where n indicates the number of rounds in a procedure, pr1 is the initial reneging rate with
n = 2 groups1, pr2 is the maximal reneging rate, and R is a relative growth rate of the curve.
As we will detail in our analysis, we set these parameters to pr1 = 0.1, pr2 = 0.8, R = 0.4 and
provide a corresponding sensitivity analysis. Figure 3 reflects the above relationship.

1Observe that by definition pr = 0 for n = 1 group, but all other group sizes will follow the logistic growth
model

Team US-11617 Page 7 of 30

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

pr1

pr

pr2

Number of Boarding Groups

Figure 2: Reneging Rate (pr1 = 0.1, pr2 = 0.8, R = 0.4)

3.3 Classifying Passengers

In order to predict the behavior of passengers, we classify individual travelers based on in-
dividual boarding factors. These factors include the walking speed, standing/sitting speed,
and the number of carry-on items. Within our model, these characteristics are stochastically
generated for each passenger at the start of the simulation.

Walking Speed The rate at which passengers navigate aisles heavily influences the total
boarding time. Given that an individual’s age is the primary factor influencing such pace,
we model walking speed accordingly. We consider the following average walking speeds of
different age groups [7]:

Table 2: Walking speeds based on age [7]

Age Group Walk Speed (m/s)

80− 89 0.94− 0.97

70− 79 1.13− 1.26

60− 69 1.24− 1.34

50− 59 1.31− 1.43

40− 49 1.39− 1.43

30− 39 1.34− 1.43

20− 29 1.34− 1.36

15− 19 1.25− 1.30

7− 14 1.00− 1.10

< 7 0.90− 0.92

Team US-11617 Page 8 of 30

Note that we break our simulation down into discrete time intervals, and each unit of
distance is equivalent to the width of the aisle (approximately 50 cm). We scale all speeds
and distances accordingly based on the average width of airline aisles.

Sitting/Standing Speed Within our simulation, the time it takes a passenger to sit down
or stand up depends heavily on their inherent walking speed. It additionally depends on
the number of passengers obstructing their motion. They must walk approximately 2 seats
forward while waiting for any passengers blocking their seat to walk approximately 2 seats
worth of distance (to exit and return back to the seat). Hence, if a passenger reaches their
seat, the time they take to sit down is modeled by:

ts = kstand ·
(
2w−1 + 2 · |w′| ·max

{
(w′

1)
−1
, (w′

2)
−1
, ...
})

(3.3.1)

Where w is the passenger’s walking speed, w′
i is the ith obstructing passenger’s walking

speed, and |w′| is the total number of obstructing passengers.

Luggage Every passenger may have at most 2 pieces of luggage as carry-ons. These items
are stored in each row’s overhead bin, which has a capacity for 4 total carry-ons. The time
it takes one passenger to load their luggage into the carry-on container is directly related to
their physical condition, and subsequently their walking speed. From the above intuition, it
is reasonable to model the lifting of a carry-on to the approximate equivalent of walking 1
seat forward. In other words, walking 1 seat forward takes as much time as lifting one piece
of luggage:

tL = kluggage · w−1 ·min {cL, L} (3.3.2)

Where w is the individual’s walking speed, cL is the current capacity of the overhead bin,
and L is the number of luggage items the passenger is holding.

Some passengers may have more luggage than others— in fact, sometimes the capacity
will not be sufficient for the entire row of passengers. In order to accommodate, rather than
having passengers navigate around the plane to find open overhead bins, we have them hold
onto and sit down with their carry-on. Once all passengers in the boarding group have sat
down, the flight attendants walk around and place each piece of excess luggage into the closest
available overhead bin. This incurs some minimal buffer time between boarding groups.

3.4 Passenger Demographics

When generating the set of passengers boarding an aircraft, the age distribution is not uniform
(e.g., it is far more likely that a passenger is middle-aged than an infant). We model the

Team US-11617 Page 9 of 30

passenger demographics as a Gaussian Distribution, which we sample from when generating
individual passengers. This normal distribution is defined as follows:

D(a) =
1

σ
√
2π

exp

(
−1

2

(
a− µ

σ

)2
)

(3.4.1)

Where a is the passenger’s age, µ is the mean age of airline passengers, and σ is the
standard deviation. Based on the average American population, we set our passenger mean
age µ = 40 and standard deviation σ = 10 [9].

20 40 60 80

0.01

0.02

0.03

0.04

Age (years)

Figure 3: Distribution of Passenger Age (µ = 40, σ = 10)

3.5 Structuring a Stochastic Process

In order to calculate the estimated boarding time of any procedure, we set up a stochastic pro-
cess that simulates the boarding process. This approach allows for a flexible computation that
matches the complex behavior of passengers. Repeating the simulation over a few thousand
iterations, we are able to retrieve a distribution that reflects the strengths and weaknesses of
a particular boarding procedure.

We design our simulation to consider a broader notion of an “aircraft”: we break down the
structure of airliners into directed acyclic graphs (DAR) with passengers traveling through
aisles in one direction. Along aisle edges, we allow for the placement of “seat rows”, which
represent groups of passenger seats. These “seat rows” come equipped with designated over-
head bins for passengers to utilize. Figure 4 demonstrates one such graph for a “Flying Wing”
aircraft.

Team US-11617 Page 10 of 30

Seat row

Aisle

Seat

Entrance

Figure 4: Unidirectional boarding graph of “Flying Wing” Aircraft

As passengers move through the aircraft, they behave according to their physical charac-
teristics and boarding factors. For example, passengers are only able to move as fast as their
walking speed allows; anyone walking slowly will hold up all passengers behind them. Addi-
tionally, when a passenger reaches their seat, they must stop and wait for any obstructions
to clear. After they sit down, the rest of the line may continue boarding. As described in
Section 3.3, passengers hold onto their carry-ons if the overhead bins fill up. After boarding
finishes, flight attendants collect this excess luggage and sort it into the nearest available
overhead bins. This buffer period occurs between group loading. We further describe the
general structure of our simulation in Figure 5.

Predict behavior at each time epoch

using a passengers physical charac-
teristics and boarding factors.

Repeat the simulation

 under a new set of passengers.
(If all groups have finished boarding)

Board the next group

once one group fully finishes boarding

Simulate the first boarding group

entering the aircraft and boarding.
According the Reneging Rate, some
passengers may not be in the correct

group.

Generate random passengers
looking to board the aircraft. Each
has a designated seat and physical

properties.

Define a boarding procedure
Set a desired number of boarding

groups n and partition the set S of
all seat numbers.

Indicate the structure of the aircraft
and the location of each unique seat

index.

Figure 5: Flowchart of the boarding simulation model

Team US-11617 Page 11 of 30

3.6 Results & Analysis

We run our model on the “Narrow Body”, “The Flying Wing”, and “Two-Entrance, Two Aisle”2

aircrafts, and consider three different boarding procedures for the “Narrow Body” aircraft.
We consider the following pre-existing, and commonplace boarding procedures: Random,
Boarding by Section, and Boarding by Seat.

Random
By Seat
By Section

Narrow Body Boarding Time Frequencies
(200 iterations)

F
re

q
u
en

cy

Boarding Time (minutes)

Figure 6: Distributions of Narrow Body boarding times

Figure 6 illustrates the distribution of practical boarding times under these procedures
in the “Narrow Body” aircraft model. We in turn compute the practical maximum, average,
and practical minimum boarding times in Table 3. It appears that the By Seat boarding
procedure is the most efficient in terms of average and practical boarding time— this result
matches intuition, as passengers are less likely to obstruct each other during the boarding
process, as they sit down in order of the seat row. Of course the amount of reneging involved
influences the magnitude of this boarding scheme’s efficacy.

2As a simplifying assumption, we split this style of aircraft’s boarding into two parts in order to maintain
one direction of motion. This is reasonable since it is fair to assume passengers enter the aircraft from the
side closest to their seat. This can be reasonably enforced by airport staff.

Team US-11617 Page 12 of 30

Table 3: Narrow Body boarding simulation (kstand = 50, kluggage = 50, µ = 40, σ = 10, R = 0.4)

Procedure groups (pr1 , pr2) Carry-ons avg. 5th percentile 95th percentile

By Seat † 3 (0.1,0.8) 0− 2 32.6 mins 28.6 mins 36.7 mins

Random† 1 (0.1,0.8) 0− 2 46.0 mins 41.2 mins 50.9 mins

By Section† 3 (0.1,0.8) 0− 2 66.9 mins 60.5 mins 73.8 mins

By Seat 3 (0.4,0.8) 1− 3 62.3 57.24 69.8

Random 1 (0.4,0.8) 1− 3 63.2 57.6 68.0

By Section 3 (0.5,0.9) 1− 3 73.1 66.1 81.8

†pictured in Figure 6

In Table 3 we additionally perform a sensitivity analysis by varying the Reneging Rate
and the number of average carry-ons: we fluctuate the values of pr1 , pr2 , and the range of
passenger carry-ons. Under varying conditions, it seems the Random procedure will be least
influenced by reneging, as the group of passengers is already fully randomized. For the other
sections, it appears that the By Section boarding procedure will always be worse than the
random procedure due to two observations: as we increase the Reneging Rate, the procedure
will be near-identical to randomness, but split into 3 groups. This means boarding will match
1 random group, but will have buffer time in between, thus increasing total time. For this
same reason, as we increase the reneging, the By Seat procedure seems to also grows similar
to the Random procedure.

The above approaches towards modeling and simulating passenger behavior benefit from
a few key strengths: mainly, the low number of input parameters that account for the major
factors associated in the boarding process. Additionally, the stochastic and iterative nature
of the simulation capture some of the chaos involved in such predictions.

While our approaches allow for a robust and adaptable model that can fit to many aircraft
configurations, this model has its limitations. For example, our model does not consider
familial or cohort passengers—groups that enter and leave the plane together. These groups
may account for a large portion of total boarding and thus could be considered. Though such
functionality is achievable within our approach by simply amending the behavior of specific
passengers at each time epoch.

Team US-11617 Page 13 of 30

IV Boarding Optimization Model

In the following section, we consider the previously presented simulation model and consider
autonomous methods of optimization. We present a set of near-optimal boarding procedures
by pairing a genetic algorithm with our boarding simulation. We run this model on three
classes of aircrafts: “Narrow Body”, “Flying Wing”, and “Two Entrance, Two Aisle”. We
additionally provide analysis surrounding which boarding strategies work best.

4.1 Boarding Group Selection as an Evolutionary Process

Leveraging the simulation developed in Section III, we can start to form relationships between
boarding group partitions and their corresponding boarding times, given a particular aircraft
layout. Drawing concepts from Darwinian evolution and genetics, we formulate a partition
as the genetic sequence of an organism and the corresponding boarding time as a heuristic
estimate of the organism’s "fitness". By defining a population of randomly initialized parti-
tions, we can replicate the process of natural selection to improve the overall fitness of the
population over time. Figure 7 summarizes this selection process, and technical details are
provided in Appendix A.

Initialize population of partitions
randomly

Calculate fitness of each individual
of the population.

Breed the surviving population via.
gene crossover to obtain a new

generation.

Create a surviving population
through tournament selection.

Mutate the genes of the new
generation according to a mutation

rate.

Figure 7: A flowchart of the genetic algorithm optimization procedure.

Team US-11617 Page 14 of 30

4.2 Results and Analysis

A B C D E F

1 1 2 3 3 1 1

2 1 3 3 2 2 1

3 1 1 3 3 2 1

4 1 3 3 3 3 2

5 1 2 3 3 1 1

6 2 3 3 3 1 1

7 1 1 3 3 3 1

8 1 2 3 3 3 1

9 3 3 3 2 1 1

10 2 3 3 3 3 1

A B C D E F

1 2 2 4 4 2 3

2 2 2 4 3 3 1

3 4 3 4 4 3 1

4 1 4 4 4 4 1

5 1 1 4 2 4 1

6 2 4 2 4 3 1

7 2 4 4 3 2 1

8 1 3 4 4 3 1

9 1 3 3 4 3 2

10 4 1 4 2 1 1

A B C D E F

1 4 4 3 5 2 5

2 2 1 5 3 5 1

3 1 1 5 4 1 1

4 1 3 4 5 3 2

5 2 4 5 4 2 1

6 1 3 2 5 1 5

7 1 1 4 5 2 2

8 5 2 5 5 3 1

9 3 4 5 4 2 1

10 1 3 5 3 3 2

...

Figure 8: Optimal “Narrow Body” Aircraft Boarding Procedures boarding group sizes of 3,4, and 5

Figure 8 presents the results of this model under boarding group sizes of 3,4, and 5 for
the “Narrow Body” aircraft. As can be seen, it appears that optimal boarding procedures
involve strategies that are similar to those of the By Seat procedure— limiting the amount of
interference within rows. In fact, it appears that under our simulated approach, the regular
By Seat procedure (or slight alterations of it) is most efficient.

A B C D E F G H I J K L M N O P Q R S T U V W X

1

1 3 3

3 1 3 1 3 3 2 1 2 3 1 2 2 3 1 3 3 2

3 3 3

2

1 3 1

3 1 3 2 2 2 3 3 1 3 1 2 3 3 2 2 1 2

1 3 2

3

1 3 1

2 1 1 3 3 3 2 3 2 2 3 3 3 2 3 1 1 2

1 2 3

4

2 2 1

2 2 1 3 1 3 1 3 1 1 2 2 1 2 1 2 1 1

3 2 3

5

2 2 1

3 2 1 1 2 3 3 3 2 1 2 3 2 3 3 1 3 1

2 3 1

6

1 3 3

1 1 1 1 2 2 3 1 1 3 3 3 1 1 3 3 2 3

1 3 2

7

2 2 1

1 3 1 3 2 1 3 1 1 3 3 3 1 3 2 3 1 2

2 3 1

8

3 3 1

3 2 1 2 1 1 2 3 2 2 2 2 1 3 1 3 1 2

3 2 2

9

2 1 1

2 3 3 2 2 2 3 1 1 1 3 1 2 1 2 2 1 1

3 2 1

10

2 2 3

2 1 1 2 2 1 1 2 2 1 3 2 2 2 1 3 2 3

2 3 2

11

2 3 3

2 3 3 1 3 1 2 1 3 3 3 3 1 3 2 1 1 1

1 2 2

12 3 3 1 1 1 3 1 3 3 2 2 1 2 2 1 1 3 2

13 3 2 1 2 1 3 2 3 3 3 3 3 1 3 3 3 2 2

14 1 2 3 3 3 3 1 2 2 2 1 2 2 2 3 2 2 3

A B C D E F G

1 1 2 2 1 2 2 1

2 2 2 1 3 1 1 2

3 2 2 3 2 2 2 3

4 3 2 2 3 3 3 3

5 2 2 2 2 1 3 2

6 3 3 3 1 3 3 1

7 2 1 1 3 3 1 2

8 3 1 2 1 1 2 1

9 3 1 3 1 3 2 3

10 3 1 2 2 1 2 3

11 1 3 2 2 2 2 1

12 1 3 1 1 2 2 2

13 2 3 1 1 1 3 1

14 2 3 1 2 2 1 3

...

Figure 9: Optimal Aircraft Boarding Procedures for Flying Wing and Two Entrance, Two Aisle
boarding group sizes of 3

This can further be seen in Figure 9, where we compare a set of optimal 3-group boarding
procedures of both the “Flying Wing” and “Two Entrance, Two Aisle” aircraft. Much like
the “Narrow Body”, it appears the strategy of By Seat boarding persists. Naturally, there is
noise within these results due to the stochastic nature of both the simulation and the genetic
algorithm.

This approach captures complex relationships between similar boarding procedure partitions—

Team US-11617 Page 15 of 30

swapping seats amongst boarding groups can capture subtle improvements in configurations.
Yet while this robust genetic algorithm has its limitations: mainly stemming from the stochas-
tic nature of both the simulation and the optimization model itself. Subsequently, many
near-optimal solutions can be found with minimal alterations (one or two seats swapped in
the partition ordering).

4.2.1 Simulating and Optimizing Lower Capacity

Within both our simulations and our optimizations, we consider close to 100% passenger
turn-up in order to provide sufficiently general procedures. If passenger turn-up is lower, as
seen in pandemic situations where capacity is decreased, these models crucially do not fall
apart. Our predictive model has an optional attendance parameter to indicate such capacity
limitations, with limited effects on both predictive time trends and optimized partitions.

Team US-11617 Page 16 of 30

V Disembarking Models

Prior to considering the process of disembarking an aircraft, we make the following obser-
vations that may shed light on the enigmatic problem faced by airline companies. Firstly,
disembarking an aircraft is inherently more difficult to predict and coordinate, as opposed to
boarding. This is due to the impatience of passengers after a long flight, as well as the key
notion of “ordered exiting”—passengers who sit closer to the aisles will naturally not allow
other passengers in their row to leave prior to themselves. In other words, an individual
sitting in the aisle seat will almost surely start disembarking if they are told to allow the
window-seat passenger to pass—if they need to get up from their seat, they might as well
leave as well.

With this key observation, along with the implicitly high reneging rate of passengers who
just experienced a multi-hour flight, we consider the problem of disembarking. We propose
two models and approaches toward this problem, though we emphasize that there is far less
predictability in the deplaning process.

5.1 Model #1: A Simulated Approach

We note that predicting the total disembarking time can be achieved with the same approach
as the boarding simulation. In fact, the same exact model may be run in reverse to compute
disembarking time. The only practical differences will lie in the Reneging Rate, as passengers
will disobey the ordering at a much higher rate. Thus, since the crowds will almost always
mix and not follow the ordering, these simulations will likely appear near identical in terms
of timing.

While we note that the practical time-saves involved with optimizing “Narrow Body” (or
any aircraft for that matter) disembarking will not be as significant as boarding, there are
notable approaches. With the simulated model, we use the above observation of “ordered
exiting” to base our optimization model. The optimal general disembarking procedure will
involve the reverse of the optimal boarding procedure, under the constraint that this boarding
procedure sits passengers down in order of seats. In other words, we choose an optimal
partition where all window passengers sit down prior to middle seated passengers, followed
by aisle seats.

This immediately places the reverse of the By Seat3 boarding as an optimal disembarking
method— it fits the above criteria and benefits from a low number of disembarking groups,
as well as being easy for passengers to understand. In the following section, we outline a more
mathematical approach in seeing why this disembarking procedure is so effective.

3This boarding category additionally considers equivalent procedures within alternate aircrafts are, like
the Flying Wing.

Team US-11617 Page 17 of 30

5.2 Model #2: Mathematical Maneuvering

5.2.1 Predicting Disembarking

A more generalized, formulaic justification for the above can be developed with a recursive
approach. More concretely, a successful model that computes the total disembarking time
for a commercial aircraft, simply needs to accurately compute the time needed for the last
passenger to exit the aircraft. Following from our “ordered exiting” observation, this last
passenger will most likely be the one in the window seat in the furthest back row. For an
aircraft with j passengers with the jth one being furthest back, this passenger will have to
wait:

tj = tr + td + tL + tj−1 (5.2.1)

Where tj−1 is the disembarking time of the passenger ahead of them, tL is the passenger’s
luggage retrieval time, tr and td are the times spent exiting the row and aisles, respectively.

We can model the time to traverse the row and aisle respectively as: tr = drow
wavg

and
td =

daisle
wavg

.

The recursive formula for the jth passenger disembarking time could be expressed as a
single sum over each passenger:

tj = tr + td + tL + tj−1 =

j∑

i=1

daislei
raislei

+
drowi

rrowi

+ tLi
(5.2.2)

Computing such a time is fairly straightforward for any airplane layout by simply comput-
ing the distances of each row and seat from the exits. Although it crucially does not consider
congestion delays within the aisles, it is accurate when passengers do not interfere. While this
is reasonable when considering the average optimal case, where passengers do not block each
other, it is not quite as robust within practical scenarios. Ultimately, this approach provides
a theoretical view and underlying intuition behind our simulated model approach.

5.2.2 Minimizing Boarding Time

As outlined within our preliminary analyses, there are inherent practical limitations to single
seat-based disembarking: beyond the problem of “ordered exiting”, children are separated
from parents and cohorts do not remain together. For this reason, as we previously noted,
By Seat methods are theoretically efficient, but may have some practical concerns. As we
mentioned in Model #1, this is the predominant/optimal approach we recommend.

As an alternate approach, we offer a modified 3rd-Row Algorithm, which applies to “Narrow
Body”, “Flying Wing”, and “Two Aisle, Two Entrance” aircrafts. This algorithm consider the
principle of releasing boarding groups by every 3rd row. Releasing groups in this way is
beneficial in three primary ways: (1) congestion is limited to a maximum of those in a row,

Team US-11617 Page 18 of 30

which is supported by the (2) space created by increasing the distance between disembarking
rows and (3) not separating key cohorts.

For “Narrow Body”, this is relatively straightforward and follows the above description.
The “Flying Wing” and “Two Aisle, Two Entrance” follow by splitting aisles into independent
aircrafts. Within “Flying Wing”, we can divide 5 cabins into four single aisle regions with row
lengths of 3 seats. With each of these four single aisle regions, we treat these regions as if
they were single aisle aircrafts. This means that we assume that passengers on these regions
cannot traverse and unloading luggage from aisles in different regions. For “Two Aisle, Two
Entrance”, although there are two exits, there are also twice as many passengers. Due to the
symmetric nature of the entrance-aisle configuration, it suffices to figure out how to optimize
the disembarking time for one half of the seats and a single entrance, as the other half of
seats and entrance would take the same amount of time.

Analogous to our boarding models, these approaches for disembarking will persist when
the number of passengers is less than full capacity (under the condition that the passengers
are uniformly distributed). Applying the 3rd-row algorithm to such a situation wouldn’t not
only optimize boarding times but do so while maintaining the same COVID distance boarding
protocols. If the COVID distancing protocol is neglected for a quicker disembarking time,
then the time can be optimized by alternating between a lower number of rows.

Team US-11617 Page 19 of 30

References

[1] Eitan Bachmat et al. “Analysis of Airplane Boarding Times”. en. In: Operations Research
57.2 (Apr. 2009), pp. 499–513. issn: 0030-364X, 1526-5463. doi: 10.1287/opre.1080.
0630. url: http://pubsonline.informs.org/doi/abs/10.1287/opre.1080.0630
(visited on 03/07/2022).

[2] Jason H. Steffen and Jon Hotchkiss. “Experimental test of airplane boarding methods”.
en. In: Journal of Air Transport Management 18.1 (Jan. 2012), pp. 64–67. issn: 0969-
6997. doi: 10.1016/j.jairtraman.2011.10.003. url: https://www.sciencedirect.
com/science/article/pii/S0969699711000986 (visited on 03/07/2022).

[3] Serter Iyigunlu, Clinton Fookes, and Prasad Yarlagadda. “Agent-based modelling of
aircraft boarding methods”. In: 2014 4th International Conference On Simulation And
Modeling Methodologies, Technologies And Applications (SIMULTECH). Aug. 2014,
pp. 148–154. doi: 10.5220/0005033601480154.

[4] Rahul Bidanda et al. “A REVIEW OF OPTIMIZATION MODELS FOR BOARDING
A COMMERCIAL AIRPLANE”. In: Aug. 2017.

[5] Shafagh Jafer and Wei Mi. “Comparative Study of Aircraft Boarding Strategies Us-
ing Cellular Discrete Event Simulation”. en. In: Aerospace 4.4 (Dec. 2017). Number: 4
Publisher: Multidisciplinary Digital Publishing Institute, p. 57. issn: 2226-4310. doi:
10.3390/aerospace4040057. url: https://www.mdpi.com/2226-4310/4/4/57
(visited on 03/07/2022).

[6] Tie-Qiao Tang et al. “An aircraft boarding model with the group behavior and the
quantity of luggage”. en. In: Transportation Research Part C: Emerging Technologies
93 (Aug. 2018), pp. 115–127. issn: 0968-090X. doi: 10.1016/j.trc.2018.05.029.
url: https://www.sciencedirect.com/science/article/pii/S0968090X1830768X
(visited on 03/07/2022).

[7] Average Walking Speed: Pace, and Comparisons by Age and Sex. en. Mar. 2019. url:
https://www.healthline.com/health/exercise- fitness/average- walking-
speed.

[8] Logistic function. en. Page Version ID: 1076600991. Mar. 2022. url: https://en.
wikipedia.org/w/index.php?title=Logistic_function&oldid=1076600991 (vis-
ited on 03/12/2022).

[9] Median Age by State 2022. url: https : / / worldpopulationreview . com / state -
rankings/median-age-by-state.

[10] Normal distribution - Wikipedia. url: https://en.wikipedia.org/wiki/Normal_
distribution (visited on 03/12/2022).

https://doi.org/10.1287/opre.1080.0630
https://doi.org/10.1287/opre.1080.0630
http://pubsonline.informs.org/doi/abs/10.1287/opre.1080.0630
https://doi.org/10.1016/j.jairtraman.2011.10.003
https://www.sciencedirect.com/science/article/pii/S0969699711000986
https://www.sciencedirect.com/science/article/pii/S0969699711000986
https://doi.org/10.5220/0005033601480154
https://doi.org/10.3390/aerospace4040057
https://www.mdpi.com/2226-4310/4/4/57
https://doi.org/10.1016/j.trc.2018.05.029
https://www.sciencedirect.com/science/article/pii/S0968090X1830768X
https://www.healthline.com/health/exercise-fitness/average-walking-speed
https://www.healthline.com/health/exercise-fitness/average-walking-speed
https://en.wikipedia.org/w/index.php?title=Logistic_function&oldid=1076600991
https://en.wikipedia.org/w/index.php?title=Logistic_function&oldid=1076600991
https://worldpopulationreview.com/state-rankings/median-age-by-state
https://worldpopulationreview.com/state-rankings/median-age-by-state
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution

Team US-11617 Page 20 of 30

VI Appendix A: Boarding Simulation Code

1 from collections import OrderedDict
2 import numpy as np
3 import random
4 import math
5
6 # all distances/spacing are with respect to the width of the aisle/passenger
7 # e.g.:
8 # 1 = width of aisle
9 # 0.2 = 20% of the aisle width

10
11 # spacing between passengers as they walk
12 PERSONAL_SPACE = 0.2
13 # reneging rate coefficients
14 MINIMUM_RENEGING = 0.1 # With two rounds, reneging occurs at a rate of approximately ___
15 MAXIMUM_RENEGING = 0.8 # As the number of rounds increases, reneging approaches a rate of ___
16 GROWTH_RATE_RENEGING = 0.4
17
18 # passenger walking speed data. aisle/passenger width = 50 cm = 0.5 m (approximately)
19 # in cm/(0.01 sec)
20 # 1 time unit is approx 0.1 seconds
21 WALKING_SPEEDS = OrderedDict({
22 7: [0.090 / 0.5, 0.092 / 0.5], # [estimate] for ages 0-6 90- 92 cm / sec
23 15: [0.100 / 0.5, 0.110 / 0.5], # [estimate] for ages 7-14 100-110 cm / sec
24 20: [0.125 / 0.5, 0.130 / 0.5], # [estimate] for ages 15-19 125-130 cm / sec
25 29: [0.134 / 0.5, 0.136 / 0.5], # [cited data] for ages 20-29 134-136 cm / sec
26 39: [0.134 / 0.5, 0.143 / 0.5], # [cited data] for ages 30-39 134-143 cm / sec
27 49: [0.139 / 0.5, 0.143 / 0.5], # [cited data] for ages 40-49 139-143 cm / sec
28 59: [0.131 / 0.5, 0.143 / 0.5], # [cited data] for ages 50-59 131-143 cm / sec
29 69: [0.124 / 0.5, 0.134 / 0.5], # [cited data] for ages 60-69 124-134 cm / sec
30 79: [0.113 / 0.5, 0.126 / 0.5], # [cited data] for ages 70-79 113-126 cm / sec
31 89: [0.094 / 0.5, 0.097 / 0.5], # [cited data] for ages 80-89 94- 97 cm / sec
32 })
33
34 # passenger age
35 MEAN_AGE = 40
36 STD_AGE = 10
37
38 # sit/stand speed coefficients
39 STAND_COEFFICIENT = 50 # intuitively: Standing + sitting is approx ___x more taxing than stepping 50 cm forward
40 LUGGAGE_COEFFICIENT = 50 # intuitively: Lifting a carry-on is approx ___x more taxing than stepping 50 cm forward
41
42
43
44
45 class Passenger:
46
47 def __init__(self, speed, carryons, seadId) -> None:
48 self.walkingSpeed = speed
49 self.carryons = carryons
50 self.positionAlongPath = 0
51 self.actionTimer = -2
52
53 self.seatNumber = seadId
54 self.seatLocation = None
55 self.rowIndex = None
56 self.sitting = False
57
58 def __str__(self) -> str:
59 return f"(#{self.seatNumber}, {self.positionAlongPath})"
60
61 def setSeatLoc(self, loc, ind):
62 self.seatLocation = loc
63 self.rowIndex = ind
64
65 def walk(self, infront=None, d=1):
66 # dont walk past seat or passenger infront
67 newPosition = self.positionAlongPath + self.walkingSpeed
68 if infront:
69 if (infront.getPosition() - newPosition) < (PERSONAL_SPACE + 1):
70 newPosition = infront.getPosition() - PERSONAL_SPACE - 1
71 self.positionAlongPath = min(newPosition, self.seatLocation - d)
72
73 def resetPosition(self):
74 self.positionAlongPath = 0
75
76 def getSpeed(self):
77 return self.walkingSpeed
78
79 def getNumber(self):
80 return self.seatNumber
81
82 def getPosition(self):
83 return self.positionAlongPath
84
85 def getLoc(self):
86 return self.seatLocation

Team US-11617 Page 21 of 30

87
88 def getRowIndex(self):
89 return self.rowIndex
90
91 def readyToSit(self, d=1):
92 distanceFromSeat = (self.positionAlongPath - self.seatLocation)
93 if distanceFromSeat >= self.walkingSpeed:
94 raise Exception("Passenger has walked past their seat")
95 return distanceFromSeat >= (0-d)
96
97 def getTimer(self):
98 return self.actionTimer
99

100 def setSitting(self):
101 self.sitting = True
102
103 def isSitting(self):
104 return self.sitting
105
106 def updateTimer(self):
107 self.actionTimer -= 1
108
109 def setTimer(self, val):
110 self.actionTimer = val
111
112 def getCarryons(self):
113 return self.carryons
114
115
116
117 class Aisle:
118 def __init__(self, l):
119 self.length = l
120 self.seats = {}
121 self.queue = []
122
123 def __str__(self) -> str:
124 return f"Aisle of length {self.length} \n With the following seat positions: {[[str(j) for j in i] for i in self.seats.values()]} \n

And queue: {[str(p) for p in self.queue]}"↪→
125
126 def getQueue(self):
127 return self.queue
128
129 def isSeatInAisle(self, passenger):
130 for pos in self.seats.keys():
131 for row in self.seats[pos]:
132 if row.checkSeat(passenger.getNumber()):
133 return True
134 return False
135
136 def isAisleClear(self):
137 if len(self.queue) < 1:
138 return True
139 return self.queue[0].getPosition() >= 1
140
141 def addToQueue(self, passenger):
142 for pos in self.seats.keys():
143 for i, row in enumerate(self.seats[pos]):
144 if row.checkSeat(passenger.getNumber()):
145 self.queue.append(passenger)
146 self.queue[-1].setSeatLoc(pos, i)
147 self.queue[-1].resetPosition()
148 return
149 raise Exception("Passenger's row is not in the aisle!")
150
151 def popQueue(self):
152 return self.queue.pop()
153
154 def addRow(self, position, row):
155 if not position in self.seats.keys():
156 self.seats[position] = []
157 self.seats[position].append(row)
158
159 def movePassengers(self):
160 for i, passenger in enumerate(self.queue):
161 nearbyRows = self.seats[passenger.getLoc()]
162 # check there is room and the passenger is in position to sit down
163 if passenger.getTimer() > -2:
164 if passenger.getTimer() <= 0:
165 nearbyRows[passenger.getRowIndex()].seatPassenger(passenger)
166 nearbyRows[passenger.getRowIndex()].stoweAway(passenger.getCarryons())
167 self.queue[i].setSitting()
168
169 else:
170 self.queue[i].updateTimer()
171
172 elif passenger.readyToSit():
173 # passenger sits down
174 waitTime = (2 / passenger.getSpeed()) + nearbyRows[passenger.getRowIndex()].obstructionTime(passenger.getNumber())
175 waitTime += LUGGAGE_COEFFICIENT * passenger.getCarryons() * (1 / passenger.getSpeed())
176 self.queue[i].setTimer(math.ceil(waitTime))
177 else:

Team US-11617 Page 22 of 30

178 self.queue[i].walk(infront=self.queue[i-1] if i > 0 else None,d=1)
179
180 self.queue = list(filter(lambda p : not p.isSitting(), self.queue))
181
182 def doneBoarding(self):
183 return len(self.queue) < 1
184
185
186 class SeatRow:
187 def __init__(self, seatIds):
188 self.row = OrderedDict()
189 for id in seatIds:
190 self.row[id] = None
191 self.overheadCapacity = 4
192
193 def __str__(self) -> str:
194 return ' '.join([str(i) for i in self.row.values()])
195
196 def seatPassenger(self, passenger):
197 if not passenger.getNumber() in self.row.keys():
198 raise Exception("Passenger attempting to sit in wrong row")
199 self.row[passenger.getNumber()] = passenger
200
201 def checkSeat(self, id):
202 return id in self.row.keys()
203
204 def obstructionTime(self, id):
205 if not (id in self.row.keys()):
206 raise Exception('Passenger is not in this row!')
207 obstructors = [1 / self.row[i].getSpeed() for i in self.row.keys() if (self.row[i] and (list(self.row.keys()).index(id) <

list(self.row.keys()).index(i)))]↪→
208 return 2 * STAND_COEFFICIENT * len(obstructors) * max(obstructors, default=0)
209
210 def numPassCurrentlyInRow(self):
211 return len([i for i in self.row.values() if i])
212
213 def stoweAway(self, toStore):
214 self.overheadCapacity -= toStore
215
216 def getAvailableOverhead(self):
217 return self.overheadCapacity
218
219 class MainAisle:
220 def __init__(self, lengthAisle) -> None:
221 self.length = lengthAisle
222 self.aisles = {}
223 self.queue = []
224
225 def addAisle(self, aisleLoc, toAdd):
226 if aisleLoc in self.aisles.keys():
227 raise Exception('There is already an aisle placed there!')
228 self.aisles[aisleLoc] = toAdd
229
230 def addBoardingGroup(self, boardingGroup):
231 self.queue = boardingGroup
232 for i, p in enumerate(self.queue):
233 for j in self.aisles.keys():
234 if self.aisles[j].isSeatInAisle(p):
235 self.queue[i].setSeatLoc(j, None)
236
237 for p in self.queue:
238 if p.getLoc():
239 continue
240 raise Exception("A passenger cant find an aisle. Their seat is not in any aisle!", str(p))
241
242 def update(self):
243 toRemove = []
244 for i, p in enumerate(self.queue):
245 if p.readyToSit(0.1):
246 if self.aisles[p.getLoc()].isAisleClear():
247 toRemove.append(i)
248 else:
249 self.queue[i].walk(infront=self.queue[i-1] if i > 0 else None,d=0)
250
251 for i in self.aisles.keys():
252 self.aisles[i].movePassengers()
253
254 self.queue = [p for ind, p in enumerate(self.queue) if not (ind in toRemove)]
255
256 def isFinishedBoarding(self):
257 if len(self.queue) > 0:
258 return False
259 for aisle in self.aisles.values():
260 if len(aisle.getQueue()) > 0:
261 return False
262 return True
263
264 def __str__(self) -> str:
265 return ' '.join([str(i) for i in self.queue]) + "\n" + '\n'.join([str(i) for i in self.aisles.values()])
266
267
268 def GenerateRandomPassenger(id):

Team US-11617 Page 23 of 30

269
270 age = np.random.normal(MEAN_AGE, STD_AGE, 1)[0]
271 speed = 1
272 for a in list(WALKING_SPEEDS.keys()):
273 if age < a:
274 speed = np.random.uniform(WALKING_SPEEDS[a][0], WALKING_SPEEDS[a][1], 1)[0]
275 break
276
277 carry = random.choice([0,1,2])
278 return Passenger(speed, carry, id)
279
280 def renegingRate(numGroups):
281 if numGroups == 1:
282 return 0
283 return (MINIMUM_RENEGING*MAXIMUM_RENEGING*math.exp(GROWTH_RATE_RENEGING*(numGroups - 2)) / (MAXIMUM_RENEGING +

MINIMUM_RENEGING*(math.exp(GROWTH_RATE_RENEGING*(numGroups - 2))-1)))↪→

1 from cProfile import run
2 from boardingSim import *
3 import random
4 import matplotlib.pyplot as plt
5 import pickle
6 import numpy as np
7

8

9 # seats are consecutively placed
10 SEAT_WIDTH = 1
11

12 # partition is a 2d array of all seat indices from 1...numPassengers
13 # attendance is the approximate % of seats filled up (how many passengers

showed up to board the aircraft)↪→

14 # numPassengers is the total number of passengers that can fit on the aircraft
(the total # of seats)↪→

15 ROWS = 10
16

17 def runSim(partition, attendance=1, numPassengers=ROWS*6):
18 NARROW_BODY = Aisle(35)
19 c = 1
20 # Initialize the aircraft
21 for i in range(ROWS):
22 NARROW_BODY.addRow(2+i*(SEAT_WIDTH), SeatRow([c, c+1, c+2]))
23 c += 3
24 # TODO: order here matters (not an actual todo, but should remove this

comment later)↪→

25 NARROW_BODY.addRow(2+i*(SEAT_WIDTH), SeatRow([c+2, c+1, c]))
26 c += 3
27

28 capacity = c-1
29 totalTime = 0
30

31 boardingGroups = [[] for subset in partition]
32

33 for index in range(1, numPassengers+1):
34 # probability a passenger showed up
35 if random.random() < attendance:

Team US-11617 Page 24 of 30

36 assignedGroup = 0
37 nonAssignedGroup = []
38 for groupidx, group in enumerate(partition):
39 if index in group:
40 assignedGroup = groupidx
41 continue
42 nonAssignedGroup.append(groupidx)
43

44 # decide whether the passenger reneges or stays in the assigned
group↪→

45 if (len(boardingGroups) > 1) and (random.random() <
(renegingRate(len(boardingGroups)))):↪→

46 boardingGroups[random.choice(nonAssignedGroup)].append(index)
47 else:
48 boardingGroups[assignedGroup].append(index)
49

50 # each boarding group enters in a random order
51 for group in range(len(boardingGroups)):
52 random.shuffle(boardingGroups[group])
53

54 # print(boardingGroups)
55 for group in boardingGroups:
56 for index in group:
57 NARROW_BODY.addToQueue(GenerateRandomPassenger(index))
58

59 t = 0
60 while not NARROW_BODY.doneBoarding():
61 t += 1
62 NARROW_BODY.movePassengers()
63 # print(t/10, ','.join(str(p) for p in NARROW_BODY.getQueue()))
64 # print(t)
65 totalTime += t
66

67 # print(NARROW_BODY)
68 return totalTime

1 from boardingSim import *
2 import random
3 import matplotlib.pyplot as plt
4 import pickle
5 import numpy as np
6 import copy
7

8 FLYING_WING = MainAisle(29)
9 aisle5 = Aisle(14)

10 aisle26 = Aisle(14)
11 aisle12 = Aisle(14)

Team US-11617 Page 25 of 30

12 aisle19 = Aisle(14)
13 for i in range(11):
14 ind = (i * 24)
15 aisle5.addRow(i+1, SeatRow([1+ind, 2+ind, 3+ind]))
16 aisle5.addRow(i+1, SeatRow([6+ind, 5+ind, 4+ind]))
17

18 aisle12.addRow(i+1, SeatRow([7+ind,8+ind,9+ind]))
19 aisle12.addRow(i+1, SeatRow([12+ind,11+ind,10+ind]))
20

21 aisle19.addRow(i+1, SeatRow([13+ind,14+ind,15+ind]))
22 aisle19.addRow(i+1, SeatRow([18+ind,17+ind,16+ind]))
23

24 aisle26.addRow(i+1, SeatRow([19 + ind, 20 + ind, 21 + ind]))
25 aisle26.addRow(i+1, SeatRow([24 + ind, 23 + ind, 22 + ind]))
26

27 for i in range(3):
28 ind = (i * 18) + (24*11)
29

30 aisle5.addRow(i+12, SeatRow([3+ind, 2+ ind, 1+ ind]))
31 ind += 3
32 aisle12.addRow(i+12, SeatRow([1+ind,2+ind,3+ind]))
33 aisle12.addRow(i+12, SeatRow([6+ind,5+ind,4+ind]))
34

35 aisle19.addRow(i+12, SeatRow([7+ind,8+ind,9+ind]))
36 aisle19.addRow(i+12, SeatRow([12+ind,11+ind,10+ind]))
37 ind += 12
38 aisle26.addRow(i+12, SeatRow([1+ind,2+ind,3+ind]))
39

40 FLYING_WING.addAisle(5, aisle5)
41 FLYING_WING.addAisle(12, aisle12)
42 FLYING_WING.addAisle(19, aisle19)
43 FLYING_WING.addAisle(26, aisle26)
44

45

46 def runSim(partition, attendance=1, numpassengers=318):
47 plane = copy.deepcopy(FLYING_WING)
48

49 boardingGroups = [[] for subset in partition]
50

51 for index in range(1, 318+1):
52 # probability a passenger showed up
53 if random.random() < attendance:
54 assignedGroup = 0
55 nonAssignedGroup = []
56 for groupidx, group in enumerate(partition):
57 if index in group:
58 assignedGroup = groupidx

Team US-11617 Page 26 of 30

59 continue
60 nonAssignedGroup.append(groupidx)
61

62 # decide whether the passenger reneges or stays in the assigned
group↪→

63 if (len(boardingGroups) > 1) and (random.random() <
(renegingRate(len(boardingGroups)))):↪→

64 boardingGroups[random.choice(nonAssignedGroup)].append(index)
65 else:
66 boardingGroups[assignedGroup].append(index)
67

68 for group in range(len(boardingGroups)):
69 random.shuffle(boardingGroups[group])
70

71 totalTime = 0
72

73

74 for group in boardingGroups:
75 plane.addBoardingGroup([GenerateRandomPassenger(index) for index in

group])↪→

76

77 t = 0
78 while not plane.isFinishedBoarding():
79 t += 1
80 plane.update()
81 totalTime += t
82

83 return totalTime

1 from tkinter.tix import ROW
2 from boardingSim import *
3 import random
4 import matplotlib.pyplot as plt
5 import pickle
6 import numpy as np
7 import copy
8

9 ROWS = 14
10

11 # 2,..,10
12 TWO_AISLE = MainAisle(10)
13 aisle5 = Aisle(ROWS)
14 aisle9 = Aisle(ROWS)
15

16 c = 1
17

18 for r in range(1,1+ROWS):

Team US-11617 Page 27 of 30

19 aisle5.addRow(r, SeatRow([c, c+1]))
20 c += 2
21 d = 0
22 if (r%2) == 0:
23 aisle5.addRow(r, SeatRow([c+1, c]))
24 d+=2
25 else:
26 aisle5.addRow(r, SeatRow([c]))
27 d+=1
28 c += d
29 d = 0
30 if (r%2) == 0:
31 aisle9.addRow(r, SeatRow([c]))
32 d+=1
33 else:
34 aisle9.addRow(r, SeatRow([c, c+1]))
35 d+=2
36 c += d
37 aisle9.addRow(r, SeatRow([c+1, c]))
38 c+=2
39 TWO_AISLE.addAisle(5, aisle5)
40 TWO_AISLE.addAisle(9, aisle9)
41

42

43

44

45

46 def runSim(partition, attendance=1, numpassengers=ROWS*7):
47 plane = copy.deepcopy(TWO_AISLE)
48

49 boardingGroups = [[] for subset in partition]
50

51 for index in range(1, numpassengers+1):
52 # probability a passenger showed up
53 if random.random() < attendance:
54 assignedGroup = 0
55 nonAssignedGroup = []
56 for groupidx, group in enumerate(partition):
57 # group = [k+1 for k in g]
58 if index in group:
59 assignedGroup = groupidx
60 continue
61 nonAssignedGroup.append(groupidx)
62

63 # decide whether the passenger reneges or stays in the assigned
group↪→

Team US-11617 Page 28 of 30

64 if (len(boardingGroups) > 1) and (random.random() <
(renegingRate(len(boardingGroups)))):↪→

65 boardingGroups[random.choice(nonAssignedGroup)].append(index)
66 else:
67 boardingGroups[assignedGroup].append(index)
68

69 for group in range(len(boardingGroups)):
70 random.shuffle(boardingGroups[group])
71

72 totalTime = 0
73

74

75 for group in boardingGroups:
76 plane.addBoardingGroup([GenerateRandomPassenger(index) for index in

group])↪→

77

78 t = 0
79 while not plane.isFinishedBoarding():
80 t += 1
81 plane.update()
82 totalTime += t
83

84 return totalTime

VII Appendix B: Genetic Algorithm Code

1 import pandas as pd
2 from numpy.random import randint, choice
3 from narrowBody import runSim
4 from tqdm import tqdm
5 import pickle
6

7

8 class GA:
9 def __init__(self, groups, population_size=100, attendance=1, n=198,

mu=0.1, max_iter=100):↪→

10 self.groups = groups
11 self.population_size = population_size
12 self.attendance = attendance
13 self.n = n
14 self.mu = mu
15 self.max_iter = max_iter
16 self.population = pd.Series(dtype="object")
17

Team US-11617 Page 29 of 30

18 def reset(self):
19 self.population = pd.Series(randint(0, self.groups,

[self.population_size, self.n]).tolist())↪→

20

21 def fit(self, part):
22 return runSim(part, self.attendance, self.n)
23

24 def get_part(self, arr):
25 out = [[] for _ in range(self.groups)]
26 for i, v in enumerate(arr):
27 # noinspection PyTypeChecker
28 out[v].append(i + 1)
29 return out
30

31 def fit_population(self):
32 return pd.Series([self.fit(self.get_part(arr)) for arr in

self.population])↪→

33

34 def select(self, k=5):
35 fit = self.fit_population()
36 indices = [fit.sample(k).idxmin() for _ in range(self.population_size)]
37 global_min = self.population.iloc[fit.idxmin()]
38 self.population = pd.Series([self.population.iloc[i] for i in indices])
39 return global_min, fit.min()
40

41 def step(self):
42 children = []
43 for p1, p2 in zip(self.population.iloc[:-1:2],

self.population.iloc[1::2]):↪→

44 c1, c2 = self.uniform_crossover(p1, p2)
45 children.extend([self.mutate(list(c1), self.mu),

self.mutate(list(c2), self.mu)])↪→

46 return pd.Series(children)
47

48 def uniform_crossover(self, p1, p2):
49 p = [p1, p2]
50 a = randint(0, 2, len(p1))
51 b = (~a.astype(bool)).astype(int)
52 return zip(*[(p[v_a][i], p[v_b][i]) for i, (v_a, v_b) in

enumerate(zip(a, b))])↪→

53

54 def mutate(self, x, mu):
55 for i in range(len(x)):
56 if choice([True, False], p=[mu, 1-mu]):
57 x[i] = randint(0, self.groups)
58 return x
59

Team US-11617 Page 30 of 30

60 def run(self):
61 memory = []
62 self.reset()
63 for _ in tqdm(range(self.max_iter)):
64 global_min = self.select()
65 memory.append(global_min)
66 children = self.step()
67 self.population = children
68 return memory
69

70

71 if __name__ == '__main__':
72 ga = GA(5)
73 mem = ga.run()
74 with open('save', 'wb') as f:
75 pickle.dump(mem, f)

	Introduction
	Background
	Problem Restatement

	Assumptions & Variables
	Assumptions
	Variables

	Boarding Simulation Model
	What are Practical Boarding Procedures?
	Passenger Reneging
	Classifying Passengers
	Passenger Demographics
	Structuring a Stochastic Process
	Results & Analysis

	Boarding Optimization Model
	Boarding Group Selection as an Evolutionary Process
	Results and Analysis
	Simulating and Optimizing Lower Capacity

	Disembarking Models
	Model #1: A Simulated Approach
	Model #2: Mathematical Maneuvering
	Predicting Disembarking
	Minimizing Boarding Time

	Appendix A: Boarding Simulation Code
	Appendix B: Genetic Algorithm Code

